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Abstract
We study a phase-field model describing the isothermal solidification process of a binary alloy. We derive a ther-
modynamically consistent phase-field model based on Warren and Boettinger. A formal asymptotic analysis relates
this diffuse-interface model to sharp-interface Stefan-like problems. We introduce a finite-element in space, semi-
implicit in time numerical scheme, and prove its convergence. Numerical tests verify the theoretical convergence
results. Finally, an adaptive mesh strategy allows us to simulate dendritic growth.
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1 Solutal phase-field model

We are interested in the apparition of dendrites during the isothermal solidification process of a binary alloy in a
domain (2, as described by a solutal phase-field model of the Warren-Boettinger [8] type. This type of model describes
the evolution of a relative concentration ¢(z,t) and a phase-field ¢(z,t) with thermodynamically consistent evolution
equations. Our model [3] is inspired on, although not exactly the same as, Warren and Boettinger’s [8]. The physical
system considered is a binary alloy, i.e. a mixture of two elements A and B, in a space domain 2. The relative
concentration c¢ of the alloy takes physical values between 0 (pure element A) and 1 (pure element B). The local solid-
liquid state of the alloy is described by the phase-field ¢, which also takes physical values between 0 (pure solid) and 1
(pure liquid). We consider the case of isothermal solidification, so that the temperature T'(z,t) = T'(t) is assumed to
be constant in space and externally imposed to the system, i.e. it is a given function of time ¢. The physical system
is supposed to be closed, and no “phase exchange” is done with its exterior. Therefore we will consider Neumann
boundary conditions for our problem. Given initial conditions co(x) and ¢o(z), the evolution of the system inside the
domain {2, according to the second law of thermodynamics and conservation of matter, is given by partial differential
equations of the form:
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where f is a free energy density, p is linked to a variable concentration diffusion coefficient
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whereas A(V¢) is an anisotropy tensor, § the interface thickness and M a model parameter. For the mathematical
and numerical analysis, we will consider the isotropic model where A(V¢$) = 1. A variable anisotropy coefficient A is
introduced for simulations of dendritic growth, and accounts for the existence of privileged directions for solidification
due to microscopic crystal growth.

To complete the model, a free energy density f must be constructed, and other model functions and parameters
must be adjusted to physical constraints. This is done in [3], where we choose
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and

(5) Di(¢) = Ds + q(¢) (D; — Dy) -

The functions g, p and ¢ are chosen as the simplest polynomials on ¢ that follow certain constraints such that the model
becomes thermodynamically consistent. We can choose g(¢) = ¢?(1 — ¢)? and p(¢) = q(¢) = f0¢ g(s)ds/ fol g(s) ds.
Functions « and 3 are affine in ¢, and they are linked, as well as v, to physical parameters such as the pure elements
melting temperatures T;g and T'B, their surface tensions o4 and 0P, and the interface thickness §. Parameters D,
and D; are respectively the solid and liquid matter diffusion coefficients. Note that the phase field diffusion coefficient
M is the only model parameter not to be directly linked to physical quantities.

The evolution equations are physically intuitive when written as the set of two equations (1) for the variables ¢ and
c. This form of the equations is absolutely necessary for the asymptotic analysis presented on section 2. Nevertheless,
we introduce now an alternate formulation in a vectorial form, better adapted for mathematical studies. This will be
especially useful on section 4. For this purpose we define the vectorial variable @ = (¢, ac), where « is an arbitrary
positive number chosen in such a way that the vectorial problem can be written as a uniform parabolic system of the
form:
ol

(6) 5 — A (D@Va) = F(a),

where
(H1) D is a 2x2 triangular matrix and F a 2-vector of Lipschitz bounded components.

(H2) The coefficients of D are given by di1 = M, di2 = 0, da1 = aDy(@) and doo = D1(@), where M is a positive
constant, D, (@), Do (@) are Lipschitz bounded functions and D (%) is lower bounded by a positive constant.

When « is chosen small enough, then D satisfies the following uniform positive definiteness condition :
(7 >0 st. DEC.C>vl.(, VE(eR

This parabolic equation is coupled with Neumann homogeneous boundary conditions and appropriate initial con-
ditions on .

2 Sharp-interface limits

We have formally shown in [2] that on the asymptotic limit where the interface-width § becomes small, our model
(1) behaves as a Stefan-like model with diffusion equations for ¢ on pure solid and pure liquid regions, coupled to
the motion of a sharp interface between these regions. We have derived four limit models, for different behaviours of
other model parameters when § tends to 0. We have used techniques similar to those formerly used by Caginalp [1]
for thermal phase-field models, and later by Wheeler, Boettinger and McFadden [9] for a simpler solutal phase-field
model.
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The limit problems for the evolution equations (1) when the interface thickness § vanishes, are all of the generic
form
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where ; and Q, are respectively pure liquid and pure solid regions, separed by an interface T'.

In all of these limits, pure liquid (8.a) and pure solid (8.b) regions with classical diffusion coexist, separed by sharp
interfaces that evolve ensuring the conservation of matter (8.c). Besides, the values of concentration at the interface
can be obtained through a “parallel tangent construction” (8.d-e), using solid and liquid free energy densities, and
dependent either on the local interface velocity v,, the local interface curvature , both or none, through the generic
linear function F(v,, k). This function is dependent on the type of limit :
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3 Mathematical analysis

We have established the following results in [6]:

o FExistence Result:
Under assumptions (H1)-(H2), when Q C IR?, d = 2,3, is a regular domain and for any i@, € L?(Q) and T > 0,
problem (1) with A(V¢) = 1 admits a (weak) solution @ € L?(0,T; H*(Q))NL>(0,T; L?(Q))NH(0,T; (H*(2))").

e Mazimum principle (for the underlying physical variables): Under the assumptions required for the existence
result, if furthermore F'(@) and the Dy(@) are equal to zero when u; = ¢ is outside the interval [0, 1], we have
the following result: Let ¢o,co € L2(Q2) with 0 < ¢g,co < 1 a.e. in Q.

Then every (weak) solution of problem (1) satisfies 0 < ¢,c < 1 a.e. in Q x (0,7).

Note that the assumed truncation of functions F (&) and D (@) does not contradict the physical model, in which
all quantities are only defined for ¢ € [0, 1], and can be given any arbitrary shape outside of this physical interval.

The existence result has been established using a Faedo-Galerkin method. Note that the maximum principle ensures
that ¢ and ¢ will always take physical values in all the domain, as long as the initial conditions do.

4 Numerical scheme, analysis and simulations

Assuming that ( is a polygonal domain, we approximate the problem (6) by a IP; finite element in space, semi-implicit
in time, discretization of the form:

ap — o
(10) /h%.ﬁh+/ D(mg)wg:wh:/p(ﬁg—l)ﬁh, Vi, € V2, n=1,...,N,
Q Q Q

where @} = (uly,, ug, 1), h is the mesh size of a triangulation defining the IP; finite element space V},, and 7 the time
step of the discretization.
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Since D is lower triangular, and d;; is independent of @, it is at each time step possible to first solve the first
equation, given by (10) by chosing @} = (v14,0), which will therefore be linear in uf,, and then use this value in the
second equation, given by (10) by chosing o, = (0,v2s), which will also be linear in uf,. Thus, the semi-implicity of
the scheme avoids having to solve non-linear algebraic equations at each time step. We have shown in [4] that:

o A priori error estimate: Under assumptions (H1)-(H2), if Q C IR? is a convex polygonal domain, if the mesh is
regular and satisfies an inverse assumption and if @ € H' (0,7, W1 (Q) N H%(Q)) then

(11) l[@(ta) — @ llo < C(H* +7), n=0,...,N,
where ||.||o stands for the L? norm.

The proof relies on the introduction of a generalized vectorial elliptic projector, using techniques based on those of
V. Thomée [7], using a generalized vectorial elliptic projector 7, : H*(Q,IR?) — V2 defined by the following property :

(12) / D(@)V(d — mp@) : VUn + / (€ — mptl).Up =0, VU, € V.
Q Q

The Lax-Milgram lemma ensures that 7,4 is well-defined. Note that the second term in the left-hand side of equa-
tion (12) is necessary to account for Neumann (instead of Dirichlet) boundary conditions for @ in our problem.

We have derived several useful properties of the generalized vectorial elliptic projector, estimating several norms
of mp@ and of @ — mpd. The convergence result (11) is then established by estimating

(13) ||@(tn) — dyllo < |lE(tn) — mati(tn)llo + [lmati(tn) — @y 1lo-

The first term of the right-hand side is immediatly estimated as being of order h? using the projector’s properties,
while the last term requires some extra work, and the use of the discrete Gronwall’s lemma. Details of the proof of
(11) can be found on [4].

Numerical simulations have been undertaken using the numerical scheme (10). Experimental convergence order
on numerical test cases coincides well with the aforementioned theoretical results, as can be seen on 1 and 2. These
figures represent the logarithm of the L? error as a function of the logarithm of the mesh size h (resp. of the time step
T), as well as reference straight lines with slopes 1 and 2 (resp. 0.5 and 1). A least-square approximation on the three
best-aligned dots of these figures gives a slope of 1.838 for figure 1, and a slope of 0.999 for figure 2, which fit well to
the predicted order of convergence h? + 7. Details of the implementation of these numerical tests can be found in [5].
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Figure 1: Numerical scheme convergence as the mesh size becomes small (with a fixed small time step)
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Figure 2: Numerical scheme convergence as the time step becomes small (with a fixed small mesh size)

We have also undertaken numerical simulations using an adaptive mesh strategy based on an ad hoc error estimator
(see [5]) for the anisotropic problem. The anisotropy tensor A, accounting for privileged directions of solidification
due to microscopic properties of crystal growth, is then defined as

(14) A(v¢)=a2(e<V¢))(}) (f)—a’<0(V¢)>a<0<V¢))( 5 (1))’

where 6(V¢) is the angle between V¢ and the horizontal axis, i.e. V¢ = |V¢|(cosf,sinf)T. We use the phenomeno-
logical anisotropy function a(f) = 1 + @cos(kf), where k is the order of anisotropy and @ € [0,1] determines the
anisotropy amplitude.

A simulation of dendritic growth, which happens when the solidification of an alloy is anisotropic, is shown on
figure 3. For this computation, model paremeters where fitted to physical values for a Ni-Cu alloy with a 4th-order
anisotropy. It took about 24 hours to compute in 2000 time steps the solution represented on figure 3, using a SGI
MIPS R10000 with 8 250 MHZ IP27 Processors. The numerical implementation is not yet optimal, since we used
direct methods for solving linear systems. The initial condition used for this computation corresponds to a small solid
disc in the middle of a homogenous liquid. The adaptive-mesh strategy used to compute this simulation allows for
better precision near the solid-liquid interface, where most of the physics happen. We look forward on establishing a
posteriori error estimates to build an estimator properly adapted to our problem, which would allow for more precise
and better justified simulations of physical situations. We also want to modify the numerical implementation in order
to shorten computation times.
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Figure 3: Simulation of dendritic growth using an adaptive mesh strategy
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